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The method of similarity analysis in the study of differential equations is 
extended to study the variability of parameters in a physical system. The 
analysis provides an insight into the meaning of "physical" similarity, which 
usually means the possibility of a reduction in the number of physical parame- 
ters characterizing the system. Theorems relating similarities to groups of 
invariant transformations are proved and employed to show how the number of 
parameters can be reduced. 

1. I N T R O D U C T I O N  

A physical system usually has many  changeable attributes. When this 
physical system is modeled by a set of differential equations, these change- 
able attributes appear  in the form of parameters.  For  example, in 
Reynold 's  modeling of incompressible viscous fluid flows around a sub- 
merged body, the equations 

v x [(v. v)v] = .v  • (v2v) 

V - V = 0  

together with the boundary conditions 

{Uo~  a t x - - - o o  

V--  0 at the object surface S (x ) - -0  

determine one solution when the kinematic viscosity v, upstream velocity 
U 0, and the surface shape of the object are f i xed .  These are physical 
attributes specifying a state for the physical system; ~they appear  as 
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parameters in the mathematical equations, w h e n  one says that flows with 
equal Reynold's number are similar to each other, one is actually not 
speaking about solutions to the equations for a single set of parameters 
- - o n e  is speaking about relations among solutions of different mathemati- 
cal equations generated by different values of parameters. Therefore, 
"similarity" is not a concept involving only the differential equations, it is 
a relationship describing the behavior of solutions under change of param- 
eters. In standard dimensional or similarity analysis, while much attention 
was paid towards reducing the number of independent variables for a 
simplification of the differential equations, the importance of the variabil- 
ity of the parameters was not pointed out explicitly. In this paper, we 
analyze the mathematical concept of "similarity" by taking into account 
the important role of parameters and discuss how similarity analysis can 
be generalized to a broader domain. 

In Section 2, the nature of mathematical modeling of a physical 
system is studied; similarity of physical states is given a mathematical 
meaning. In Section 3, the group method is used to investigate similarity in 
the space of solutions. The meaning of reducing the number of parameters 
for a physical system is clarified. Theorems on the relationship between the 
group of invariant transformations (see later discussion) and similarity of 
solutions and on the number of parameters that can be reduced by such a 
group will be given. In Section 4, examples will be given to illustrate the 
concepts and application. 

For  conciseness and precision, mathematical notations and terminol- 
ogy will be heavily employed in aur discussion. 

2. MATHEMATICAL M O D E L I N G  OF A PHYSICAL SYSTEM 

We are interested in cases that the physical system can be modeled by 
a system of differential equations. When we say a "system," we assume 
that appropriate boundary conditions have been included so that the 
mathematical problem is well posed (unique solution exists) when values of 
the parameters are fixed. Parameters are those constants that do not 
change in a fixed state (yielding one solution), but  may be changed and 
give rise to different solutions. Even though the solutions for different 
values of parameters are generally different, some of them may be ob- 
tained from each other by transformations involving the variables. When 
they are related like this, we say that they are similar to each other. When 
similarities exist among solutions, many related solutions can be found by 
a single integration of the equations. Even when solutions for a large range 
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of parameters are wanted, only those for a subset of the range need to be 
calculated. Other solutions can be generated by known transformations. In 
this sense the parameters are reducible. How can we tell whether similari- 
ties exist? Similar to the reduction of independent variables in ordinary 
similarity analysis, parameters can be reduced when transformations pre- 
serving the form of the system of differential equations can be found. We 
are going to make these points more precise in later discussion. 

Consider a system Y.(p,x,y) of differential equations (including 
boundary conditions) with l parameters p E P (range of parameters) C R t 
( R =  the set of real numbers), m independent variables x ~ X  (domain of 
independent variables) c R "  and n dependent variables y EY (range of 
dependent variables) c R". We shall write P x X x Y as Z. A transformation 
g: Z ~ Z  with g(p,x,y)=(q,u,v) [ qEP ,  uEX,  vEY]  is said to leave Y~ 
invariant if E(q(p,x,y), u(p,x,y), v(p,x,y)) is equivalent to E(p,x,y), i.e., 
the two systems have identical form. The transformation g will be called an 
invariant transformation. To ensure that parameters remain parameters 
(independent of the variables) after the transformation, q is required to be 
dependent on p only. Therefore, (q, u,v) can be written as (gl(P), g2(P, x, 
Y), g3(P, x, y)). Invariant transformations will be assumed to be of this 
form. 

We shall assume that for any fixed p ~P ,  E(p,x,y) has a unique 
solution fp: •  When p changes, a set of solutions 

satisfies E(p,x,y) forp~P} 

is obtained. We say that the solutions fp,fq~65 are similar (fp~fq) if 3 
(there exists) a one-one ,  onto transformation h: X • Y-~X • V such that 

(x,y) ~fp if h(x,y) ~fq 

(fp and fq are treated as binary relations in the above expressions), h is 
called a similarity transformation. The relation defined above is an equiva- 
lence relationship in ~ (see Birkhoff and MacLane, 1965). Therefore, a 
quotient set ~ can be formed to contain dissimilar classes of solutions 
generated by P; within each class, all solutions can be generated by one 
known solution in the same class through similarity transformations. This 
is exactly what we want to match the common sense of "similarity." The 
quotient set turns out to be a nice device to categorize the related 
solutions. The knowledge of one solution per class would suffice for a 
knowledge of all solutions. 
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3. THEOREMS RELATING GROUP OF INVARIANT 
TRANSFORMATIONS TO SIMILARITIES AMONG 

SOLUTIONS 

In the previous section the problem of similarity has been identified 
with the problem of finding equivalence classes of solutions in ~. The 
subsets of parameters corresponding to these classes (p, q E the same subset 
iffp,fq ~the same class; the collection of these subsets will be labeled as ~) 
contain parameters which can be "shrunk" to an arbitrary "representative" 
parameter in each subset and still generate the same class of solutions. The 
possibility of such "shrinking" is the actual meaning of reduction of 
parameters. More precisely, consider the function S : P ~  defined as 

S ( p ) = f ,  

which maps each parameter to its corresponding solution. It is well defined 
as fp is unique and is onto by the definition of ~. It may or may not be 
continuous (the topology of ~ can be chosen to be the relative topology of 
the whole function space). The quotient ~ / , ~  is also a topological space 
with the quotient map 

QI: 

continuous. The composition map QloS : P ~ / ~  is onto (and continu- 
ous if $ is continuous) and can be viewed as the generation of dissimilar 
classes by parameters. 

Definition. The range of parameters is said to be reducible if 3 aproper 
subset P' of P such that Q1 o SIP' (restriction to P') is onto ~ / ~ .  

The meaning of this definition is quite obvious: if the same amount of 
dissimilar solutions can be generated by a smaller range of parameters, this 
smaller set can be used without losing information. 

The next question is how to find these equivalence classes. We want to 
show how the group method (see Birkhoff, 1960; Bluman and Cole, 1974) 
can be nicely tailored for this goal. For this purpose, two theorems are 
proved here. The first one, which relates the existence of a group of 
invariant transformations to the existence of similarities in the solutions, 
provides the foundation for the application of the method. The basic idea 
is to show that the action of the group on P traces out orbits (as subsets of 
P) each of which generates the same class in ~ / ~  (i.e., each orbit is a 
subset of an element in C). Restricting QlOg to the subset of "representa- 
tive" elements from these orbits (one from each) can generate all dissimilar 
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classes of solutions. Of course, there may be repetition in the generation 
process (the restricted function, even though onto, is not one-one). The 
capability of the group to reduce parameters depends on the size and 
effectiveness of the group. Theorem 2 provides a more definitive estimate 
by stating that a subspace of P with dimension = dim(P)-dim(orbits)  can 
be found to generate all dissimilar classes of solution when the group is a 
Lie group. 

Theorem 1. Let G be a group of transformations on Z, whose 
elements leave E invariant and its projective orbits in P are not all 
singletons; then P is reducible. 

The projective orbit of G in P through Po is defined as 

~ = { PIP = gl(Po) for some g ~ G; g = (gl,g2,g3) } 

The collection of orbits defines an equivalence relation A in P (aAb if a, b 
belong to the same orbit) and a quotient set p /A  can be formed. Before we 
prove this theorem, let us first prove two lemmas; the first one, which 
relates (almost identifies) transformations leaving X invariant with similar- 
ity transformations, is fundamental. 

Lemma 1 (Basic Lemma). If g is an element of the group G which 
leaves E invariant and gl maps a to b in P then fa,-.~fb. 

Proof. That g leaves E invariant means that ~(b,u,v) or ~(gl(a),  
g2(a,x,y),g3(a,x,y)) is equivalent to ~(a,x,y). fb is a solution of ~(b,u,v). 
Define h: X • Y--->X • Y to be h(x,y) = (g2(a,x,y),ga(a,x,y)). [The inverse of 
h is just (h-1)(u,v)=((g-l)2(b,u,v),(g-1)3(b,u,v)). ] The surface {(x,y)[ 
(u ,v)= h(x,y),(u,v)Efb } satisfies ~,(gl(a),g2(a,x,y),ga(a,x,y)) as well as 
~(a,x,y). By assumed uniqueness, it is identical to fa. Therefore, (x,y)~f~ 
if h(x,y)~fb, implying that fa"fb, h is the required similarity transforma- 
tion. �9 

Defining Q2 to be the quotient map from P to P/A, we have the 
following lemma. 

Lemma 2. The composite function Qlo$oQ21:  P/A--->~ is 
well defined and onto. It is continuous if S is continuous. 

Proof. If a,b~orb(po)EP/A , then 3 g E G  such that gl(a)=b. By 
Lemma 1, this implies that fa~fb, therefore, the composite function is well 
defined. If U is open in ~ - / ~ ,  by definition Q l l ( U )  is open (Qi - l  may 
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not be continuous, but Q1 is open and continuous). If S is continuous, 
~-  I(Q1- l(U)) is open in P and Q2(~-I (QI- I (u) )  is open in p/A.  �9 

Proof of Theorem 1. Select one element from each projective orbit to 
form a subset P', i.e., find a set P ' =  Q 2  l(P/A) (Q2 -1 exists because of the 
axiom of choice). Lemma 2 implies that Qio~ [P' from P' to o-9-/~ is onto 
as it can be written as QloS oQ21oQ21p' and Q21P' is onto. (It is continu- 
ous in the relative topology if S is continuous.) P' is a proper subset of P 
as not all the projective orbits are singletons. �9 

The proof of Theorem 1 demonstrates the correspondence between 
the orbits generated by G and the equivalence classes of similar solutions 
in ~.  The function from P' to ~ / ~ ,  even though onto, is not necessarily 
one-one.  "Onto"  ensures that all dissimilar solutions can be generated by 
P', but overlapping may occur. 

Theorem 1 can be applied to very general situations (e.g., when P is 
discrete or finite), but a more specific corollary would be more helpful for 
reducing the number of parameters (l). Consider P to be of the form 

P--  ( (Pl  . . . .  ,Pl)IPl E]I . . . . .  P l a i t )  (3.1) 

where 1 i C_R(1 <i  < l )  are subsets of R. Each p; is called a parameter; l is 
the number of parameters. We say that the number of parameters can be 
reduced by s if 3 a subset P' c P of the following form: 

P' = ( (Pl . . . . .  pz)lp~, = const . . . . .  Po~ = const, other p, ~ 1 i ) (3.2) 

such that Q1o5 [P' is onto ~ / ~ .  

Corollary. Suppose that P has the form (3.1) and every element in 
P is in a projective orbit of G through some dement  belonging to a 
fixed subset of the form (3.2), then P is reducible to P' and the 
number of parameters can be reduced by s. 

Proof All orbits are through some point in P', therefore the restricted 
function Q2IP' is onto p /A.  Thus the composite QIOS o Q2-1oQ21 p' is onto. 
Again if S is continuous, this function is continuous (when P' has the 
relative topology). �9 

We should remark that P' which satisfies the conditions of the above 
corollary is not unique; usually, there is freedom in choosing which 
parameters are to be eliminated. However, s can be seen to be always less 
than the dimension of the projective orbits. To show that the dimension of 
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the projective orbits (o) can be fully utilized, we shall show that s can 
indeed reach o in certain new coordinate systems for P. 

Theorem 2. Suppose that P having form (3.1) is an analytic mani- 
fold of dimension L If G is a Lie group whose elements leave 
invariant and all the projective orbits under G in P have the same 
dimension o, then locally 3 coordinates (new parametrization) qi 
(1 < i < l) in which qo + l = const . . . .  qt-- const describe sections of 
projective orbits and 3 a subset P" of P which has dimension 1 - o  
(coveting dimension) such that QloS [P' is onto. 

Proof (sketched). The infinitesimal transformations generated by the 
Lie group in P form a Lie algebra (see Chevalley, 1946). They define an 
kintegrable C ~ o-dimensional distribution D in P as the dimension of the 
tangent spaces to the orbits have the same dimension o. Therefore, P is 
foliated by an integral manifold of D (see Spivak, 1970). Each slice of this 
manifold is a section of a projective orbit. Locally, 3 coordinate systems of 
the form (U, q) where U is an open set in P with q ( U ) =  ( - e , e ) •  ( - e ,  e) 
•  X ( - e , e )  such that sections of projective orbits in U have the form 
{ p E  UIq~+t(p)=const . . . . .  qt(p)=const, ql . . . . .  q o ~ ( - e , e ) )  (~ is a real 
number). A countable subcollection of all these coordinate systems covers 
P CW as it can be expressed as the union of a countable number of 
compact subsets of R t. The union of all points p that satisfy ql(P) . . . . .  
q , (p )=O in these subcoIIections of coordinate systems is the required P'. 
Countability of the subcollection ensures that the covering dimension of 
the union is l -  o. �9 

Notice that the dimension of the projective orbits is not necessarily 
equal to the dimension of G even though it cannot be larger. G may not be 
effective on P as G may contain a nontrivial normal subgroup whose 
elements leave P unchanged and this subgroup reflects the possibility of 
reducing independent variables. 

This theorem should be compared with its counterpart  in ordinary 
similarity analysis (see p. 145, Birkhoff, 1960; p. 160, Bluman and Cole, 
1974). In our proof, the usual requirement that the Lie group is solvable is 
not necessary. 

4. DISCUSSION 

When we want to test whether a certain group of transformations 
would leave Y. invariant we substitute the general form of the functions in 
E and derive constraints on them by requiring that the form of E be 
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preserved. From the theorems proved in Section 3, one can see that this 
procedure is in fact equivalent to the use of extended infinitesimal trans- 
formations for testing invariance. We will not elaborate on this technique 
here. [This method was first developed by Sophus Lie in the 1890's, and 
the readers are referred to Bluman and Cole (1974) for a recent exposition 
of the subject.] For the purpose of making the concepts in previous 
sections more concrete, we discuss the application to a simple example in 
detail here. 

Let us consider Schwarzchild's scheme (Schwarzchild, 1958) of finding 
solutions for the equations describing stellar structures. This scheme in- 
volves matching of integrations from surface inward and from center 
outward. Therefore a series of solutions is needed for the matching. As a 
demonstration, we only discuss outward integrations from the center. The 
situation is described by the following system of equations: 

d p =  p q 

dx  t X 2 

d q  .~. P x 2 

dx t 

d t  = _ C p f-f- (radiative case) 
dx t 6.5 x 5 

o r  

_ 2 t dp (convective case) 
5 p  dx  

df = Op2:_ 2x2 
dx 

with boundary conditions 

atx--O q=O, f=O, p = p c ,  t=t~ 

where C,D,pc, t  c are free parameters (totalling four), # is a fixed constant, 
and p,  q, t , f  has the physical meaning of pressure, mass, temperature, and 
flux, respectively. First, consider the radiative case. It is extremely tedious 
to find solutions for all individual values of these parameters. Fortunately, 
because of parametric symmetries, the number of parameters can be 
reduced. Substituting affine transformations of both parameters and vari- 
ables in the above system and requiring that the form of the system of 
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equations be preserved, we obtain the following group of invariant trans- 
formations: 

( g l g ( C , D , p c , ~ , x , p , q , t , f ) = ( a l C  . . . . .  a9f) wi th~7/asa5  = l, 
~ 6 / ~ s  1 ,  2 ~.~ _ 3 2 ~ - ~  _ 

= ~1~6~9/~8 ~5--1'  ~2~5~6~8 / ~ 9 - - 1 '  
a3 /a6  = 1, a4 / a8=  1} 

which has projective orbits of dimension 3. Choosing a I = 1 / C ,  or2-- 1 / D ,  
and a 4 -  1/to, one can relate all integrals of the general system to integrals 
with only one free parameter Pc by 

pc) _ 
P0 x0 ' P0 

q -  - - - F  x .  Pc 
qo Xo ' 

-' ) 
to P0 

Xo' 

where Xo=-- - 1~as, po x l / a r ,  qo ~ 1/a7,  to = 1~as, fo=~ 1 / a  9 and (Fl(x;pc) ,  
. . . ,F4(x;pc)  ) are solutions of the restricted system with C - - D =  t~--1. As 
for the convective case, only D,pc, t c are parameters. An invariance group 
having the form 

{ g[ g(D,pc,  t c, x ,p ,  q, t , f )  = (a1D . . . . .  a s f  ) with ot6/ot70t 4 = 1, 
a~ets/OtrOt 7= 1, 3 2 ~-2 _ 0/10~40/50/7 /Or 8 -  1, 0t2/0~5 = 1, Ot3/0~7 = l )  

exists. The dimension of the orbits is 3. This indicates that only one 
integration is needed to be performed for all similar solutions. From this 
example we can see how explicit consideration of changeable parameters 
can lead to a tremendous saving of effort in numerical work. 

Returning to Reynold's modeling mentioned in the Introduction, we 
remark that to allow for invariant transformations, the boundary surface 
cannot be completely free. The validity of Reynold's modeling requires 
that the boundary surface be parametrized as S ( x / L ) =  0, where L is a 
length parameter and similarity simply means that all solutions generated 
by arbitrary values of p, U0, and L can be obtained from the subset of 
solutions {v--F(x; p)} for the restricted cases U o -  L =  1 (p is the only free 
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parameter) .  The above  assertion can be easily verified by observing that  
the group of t ransformat ions  ( g[ g(  U0, L, ~,, x, v) = (a  I U o, a2L, a3p, a4x, asv ) 
with a 5 = a3/a4 ,  a 5 = al, a 4 =  a2) leaves the system invariant. Reinterpreta-  
t ion of dimensional  analysis in this way  provides a definite mathemat ica l  
meaning  for employing dimensional  analysis. 

In  summary,  the main  result of  this paper  is the clarification of  the 
concept  of  similarity, which was then demonst ra ted  to be very useful in 
establishing the cor respondence  between groups of  invariant  t ransforma-  
tions and similarities (Theorems 1 and  2). With an aim to the investigation 
of  the role of parameters,  we had  not  e laborated on the application. 
However ,  as the theorems are very general, they can be used as guides even 
in complicated situations. 
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